Терагерцовое излучение имеет множество применений, но источники терагерцового излучения высокой интенсивности трудно построить. Команде исследователей из Венского Технологического Университета удалось создать новый вид квантового каскадного лазера с выходной мощностью в один ватт терагерцового излучения, побив предыдущий мировой рекорд около 0,25 ватт.
Терагерцовые электромагнитные волны невидимы, но невероятно полезны, они могут проникать сквозь большинство материалов, которые непрозрачны для видимого света и они идеально подходят для обнаружения различных молекул. Терагерцовое излучение может быть получено с использованием крошечных квантовых каскадных лазеров, шириной всего в несколько миллиметров. Этот особый вид лазера состоит из отдельных «сшитых» полупроводниковых слоев нанометрового масштаба. В Вене, в Технологическом Университете (ВТУ), установлен новый мировой рекорд, с использованием специальной технологии слияния.
Для электронов в каждом слое квантового каскадного лазера, только некоторые дискретные уровни энергии допускаются. Если подается электрический ток нужной величины, то электроны переходят от слоя к слою, и при каждом таком прыжке они излучают энергию в виде света. Так может быть получено с высокой эффективностью экзотическое терагерцовое излучение, лежащее между микроволнами и инфракрасным светом.
Многие молекулы поглощают свет в терагерцовой области спектра, имея характерные спектры поглощения, эти спектры можно рассматриваться как «оптические отпечатки пальцев» молекул. Эта особенность терагерцового излучения может быть использована в химических детекторах. Терагерцовое излучение также может сыграть важную роль и в медицине для просвечивания живых объектов, так как оно не является ионизирующим излучением.
«Это работает только для очень конкретной конструкции квантового каскадного лазера, — говорит ученый из венского университета Кристоф Дютч (Christoph Deutsch). — Со стандартной структурой квантового каскадного лазера, достигнутых результатов получить было бы невозможно. Потребовалось создание именно симметричных лазеров, через которые электроны могут проходить в обоих направлениях. Команде пришлось компенсировать асимметрию, которая обычно возникает в таких лазерах. Чем больше количество слоев, тем больше фотонов производится. Кроме того, повышается эффективность из-за улучшенных оптических свойств».
Читайте также: Новости Новороссии.